COMBINATORIAL ANALYSIS

FELIX GOTTI

LECTURE 24: CAYLEY’S THEOREM

Given a set V' consisting of n vertices, one can easily argue that there are 2(3) graphs
on the V. Indeed, there are (’;) pairs of vertices and, in order to build a graph on V', we
merely have to decide for each of these pair of vertices whether to connected with an
edge or not. If instead of graphs, we want to count the set of trees on V', we can still do
so but the argument is not as simple. In this lecture, we will prove Cayley’s Theorem,
which state that there are n"2 trees on V. First, we provide a characterization of
trees in terms of paths, which we will use in the proof of Cayley’s theorem.

Here is another characterization of a tree in terms of paths.

Proposition 1. A simple graph is a tree if and only if for any distinct two vertices
there exists exactly one path connecting them.

Proof. Let G be a simple graph.

For the direct implication, assume that G is a tree and suppose, towards a con-
tradiction, that there are two distinct vertices x and y of G and two distinct paths
VU3 . .. Uy, and wyiws . .. w, connecting x and y. Let ¢ be the minimum index such that
Vit1 7 Wit+1. Now suppose that j is the minimum index such that j > ¢ and w; appears
in the path v1v; ... v,,. Suppose that w; = vi. Then v;v;11 ... vsw;—1 ... w;q; is a cycle
in GG, which contradicts that G is a tree.

To argue the converse, assume that for any two distinct vertices of G there ex-
ists exactly one path in G connecting them. Now suppose, by way of contradiction,
that GG is not a tree. Thus, G must have a cycle vivs ... vv; and, therefore, v1v, and
V1UpU_1 . . . U are two distinct paths from v; to vy, which is a contradiction. O

We are now in a position to prove the main result of this lecture.

Theorem 2 (Cayley’s Theorem). For each n € N, the number of trees on [n] is n" 2.

Proof. Fix a positive integer n, and let ¢,, denote the number of trees on [n]. Consider

the set .7, consisting of trees on [n] such that each T in 7, has a distinguished pair

of vertices (b,e) € V x V (it may be that b = e¢). We proceed to show that .7, is in

bijection with the set %, consisting of all functions f: [n] — [n]. Let f: [n] — [n] be
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a function, and let C' be the set of elements in [n] that are part of a cycle under the
action of f, that is,

C:={cen]| f"(c) =c for some m € N}.

Write C' = {¢i, ..., ¢}, where ¢; < -+ < ¢. Observe that C' = {f(c) | ¢ € C'}. Now
we produce an element of Ty € .7, as follows. Let [n] be the set of vertices of T¢. Then
create a path with the elements in C' by adding, for each j € [k — 1], an edge between
f(c;) and f(ciy1). Then, for every element v € [n] \ C, add an edge from v to f(v).
Finally, let (f(c1), f(ck)) be the distinguished pair of vertices of 7.

Claim 1. Ty € 9,. Observe that for each v ¢ C, there is exists m € N such that
f™(v) € C as, otherwise, there would be a cycle (under the action of f) disjoint from C.
Thus, any v € V(1) \ C is connected to a vertex of C'. This, along with the fact that
the vertices in C form a path in T}, ensures that T is connected. To verify that 7T has
no cycles, first note that any potential cycle in Tt must involve a vertex in C' because
otherwise we would have a an f-cycle not contained in C'. Then if we had a cycle not
contained in C, there would be a path wyvivs...vewe in Ty, where wy,w, € C and
v1,...,v € [n]\ C, and so f(vy) = wy, which implies that f(v,_1) = v, and so we
would obtain that f(v;) = vy, which generates a conflict with the fact that f(v;) = wy.
Hence every potential cycle of T must involve only vertices in C, and the fact that C
is a path allows us to conclude that T has no cycles. Thus, T} is a tree.

every edge of Ty has the form (v, f(v)) for some v € V. Thus, the edges of any
potential cycle of Ty would be edges connecting the vertices in C, but all the edges
connecting any two vertices of C' in Ty form a path, which is free of cycles. Hence T
is a tree with the distinguished pair (f(c1), f(cx)), which means that Ty € .7,.

Claim 2. The map f — Ty is a bijection. Suppose that T' is a tree on [n| with
distinguished pair (b,e). We will construct a map fr: [n] — [n] as follows. Since
T is a tree, there is a unique path P := fify... fx from b to e. Let ¢1,...,c, be a
rearrangement of f1, ..., fx such that ¢; < --- < ¢, and define fr(¢;) = f;. If a vertex
w € [n] is not part of the path P, set fr(w) = v, where v is the only adjacent vertex
to w in the unique path from w to P (note that there is only one path from w to P
because T' does not contain any cycles). It is easy to check that 7'+ fr is the inverse
function of f — T}.

Therefore |7,| = n™, which is the number of functions from [n] to [n
hand, |.7,| = n?t, as, by definition, elements of .7, are pairs (T, (b, €)
tree on [n] and (b,e) € V(T)?. Thus, we conclude that ¢, = n"2

]. On the other
), where T is a
0

A rooted tree on a nonempty set V' is a pair (T,v), where T is a tree with V(T') =V
and v € V. A rooted forest on V is a forest with set of vertices V whose connected
components are rooted trees.

Corollary 3. For every n € N, there are (n + 1)"~1 rooted forests on [n], that is,
forests on [n].
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PRACTICE EXERCISES

Exercise 1. Prove Corollary 5.

Exercise 2. A function f: [n] — [n] is called acyclic provided that the action of f on
[n] does not generate any cycle of length larger than 1. Prove that there are exactly
(n+ 1" acyclic functions from [n] to [n)].
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